In this paper, I draw on a research in describing and discussing the pedagogy, mathematical content and the reality of teacher's instructional situation- as a case study in 2006.

Moreover, the fact that teachers in many developing countries are in dire need,
• better content knowledge is often not mentioned.
• It is worth noting that advocacy is nothing more than a mildly radical interpretation of a prevailing national trend.
• Inferring from the above, two developments may emerge- one is the emphasis given to teachers’ acquisition of
 • pedagogical knowledge, and second is acquisition of
 • content knowledge

Motivating students to engage in mathematical learning activities
Extrinsically motivating students to engage in learning activities is superior to not motivating students at all. Thus students can be motivated to do mathematics once they discover the connection between the mathematics and their own needs and interests.
Issues to consider

Because giving directions is frequent, teachers can minimize
streamline communication procedures,
model problems attitude and
reduce the amount of teacher-talk in
classrooms by establishing cues
that instantaneously communicate certain recurring
expectations to students.

Methodology

- The methodology involved in this study was
 exploratory for which a qualitative approach was
 used as a case study.
- The respondents (fifteen learners, five tutors and
 guardians respectively) were selected according to
 a purposive non-probability sample method;
- semi-structured interview with a schedule with
 each of the respondents (guardians) was used.
- An inductive form of reasoning was used and
 concepts, insights and understanding developed
 from patterns in the data.
- Responses that were quantified were transformed
 into tables where percentages were computed to
determine the degree of emphasis.

Interpretation of Findings

There is an alarming trend, which may be called the
mathematics-avoidance syndrome. With few
exceptions, be it in curriculum, or assessment, tend
to skirt the importance of pedagogy and content as
one parent (Mr. T- pseudonym). This syndrome is
borne out by many of the major developments in
mathematics education of the past decade, which is
not driven from sound pedagogical and content
knowledge contended by Arzt, and Armour-Thomas
(2002). Hence some advocates decide that the way to
improve mathematics education is to change
pedagogical techniques and make small group
learning centrepiece of mathematics instruction in
every classroom supported by Cangelosi (1999).

Appendix: Discussion and Results

Nevertheless the fact that 18.2% used the activity method and 63.6% used problem-
solving methods in teaching mathematics meant that all was not lost. As noted above,
since teachers are expected to use integrated approaches to teaching mathematics, a
unified method of mathematics, which would consider all the teaching methods, would be
more appropriate.

Adding up the values of the analysis of ‘very often’ and ‘often’
and then arranging them in a hierarchical order, the method from the most frequently
used to the least frequently used, demonstration and discussion methods appeared to be
the most popularly used methods (i.e. 100.0% in each case). The other methods used
included; activity method (81.9%), lecture method (81.8%), discovery method (85.5%)
and problem solving method (83.7%).

Teachers notion about certain aspects of teaching mathematics
were also explored. All teachers (100%) regarded students’ ability to observe, develop
skills as important, also all teachers attached importance to students’ ability to participate
in mathematics lessons. In addition 81.8% of teachers attached some importance of
forming groups for activity. Finally 90.9% teachers considered students’
communicating among themselves as important. Although most teachers still relied on
traditional methods of teaching such as lecture method and demonstration method often,
their notions that students must participate actively in the lessons should give an
encouraging signal.

Learning is a highly complex process and has characteristics,
which are both social and individual in nature. Mathematical knowledge may often seem
to have a highly personal nature as if we had created it for ourselves. However,
mathematics is usually taught to a large group of learners who are asked to arrive to a
common understanding of an accepted body of knowledge.